Extensions 1→N→G→Q→1 with N=C3⋊Q16 and Q=C22

Direct product G=N×Q with N=C3⋊Q16 and Q=C22
dρLabelID
C22×C3⋊Q16192C2^2xC3:Q16192,1368

Semidirect products G=N:Q with N=C3⋊Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
C3⋊Q161C22 = SD1613D6φ: C22/C1C22 ⊆ Out C3⋊Q16484C3:Q16:1C2^2192,1321
C3⋊Q162C22 = D811D6φ: C22/C1C22 ⊆ Out C3⋊Q16484C3:Q16:2C2^2192,1329
C3⋊Q163C22 = D84D6φ: C22/C1C22 ⊆ Out C3⋊Q16488-C3:Q16:3C2^2192,1332
C3⋊Q164C22 = S3×C8.C22φ: C22/C1C22 ⊆ Out C3⋊Q16488-C3:Q16:4C2^2192,1335
C3⋊Q165C22 = D24⋊C22φ: C22/C1C22 ⊆ Out C3⋊Q16488+C3:Q16:5C2^2192,1336
C3⋊Q166C22 = C2×D4.D6φ: C22/C2C2 ⊆ Out C3⋊Q1696C3:Q16:6C2^2192,1319
C3⋊Q167C22 = C2×Q8.7D6φ: C22/C2C2 ⊆ Out C3⋊Q1696C3:Q16:7C2^2192,1320
C3⋊Q168C22 = C2×S3×Q16φ: C22/C2C2 ⊆ Out C3⋊Q1696C3:Q16:8C2^2192,1322
C3⋊Q169C22 = C2×Q16⋊S3φ: C22/C2C2 ⊆ Out C3⋊Q1696C3:Q16:9C2^2192,1323
C3⋊Q1610C22 = S3×C4○D8φ: C22/C2C2 ⊆ Out C3⋊Q16484C3:Q16:10C2^2192,1326
C3⋊Q1611C22 = SD16⋊D6φ: C22/C2C2 ⊆ Out C3⋊Q16484C3:Q16:11C2^2192,1327
C3⋊Q1612C22 = D85D6φ: C22/C2C2 ⊆ Out C3⋊Q16488+C3:Q16:12C2^2192,1333
C3⋊Q1613C22 = D86D6φ: C22/C2C2 ⊆ Out C3⋊Q16488-C3:Q16:13C2^2192,1334
C3⋊Q1614C22 = C24.C23φ: C22/C2C2 ⊆ Out C3⋊Q16488+C3:Q16:14C2^2192,1337
C3⋊Q1615C22 = C2×Q8.11D6φ: C22/C2C2 ⊆ Out C3⋊Q1696C3:Q16:15C2^2192,1367
C3⋊Q1616C22 = C12.C24φ: C22/C2C2 ⊆ Out C3⋊Q16484C3:Q16:16C2^2192,1381
C3⋊Q1617C22 = C2×Q8.14D6φ: C22/C2C2 ⊆ Out C3⋊Q1696C3:Q16:17C2^2192,1382
C3⋊Q1618C22 = D12.33C23φ: C22/C2C2 ⊆ Out C3⋊Q16488-C3:Q16:18C2^2192,1395
C3⋊Q1619C22 = D12.34C23φ: C22/C2C2 ⊆ Out C3⋊Q16488+C3:Q16:19C2^2192,1396
C3⋊Q1620C22 = C2×Q8.13D6φ: trivial image96C3:Q16:20C2^2192,1380
C3⋊Q1621C22 = D12.32C23φ: trivial image488+C3:Q16:21C2^2192,1394

Non-split extensions G=N.Q with N=C3⋊Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
C3⋊Q16.1C22 = D12.30D4φ: C22/C1C22 ⊆ Out C3⋊Q16964C3:Q16.1C2^2192,1325
C3⋊Q16.2C22 = D8.10D6φ: C22/C1C22 ⊆ Out C3⋊Q16964-C3:Q16.2C2^2192,1330
C3⋊Q16.3C22 = SD16.D6φ: C22/C2C2 ⊆ Out C3⋊Q16968-C3:Q16.3C2^2192,1338
C3⋊Q16.4C22 = D12.35C23φ: trivial image968-C3:Q16.4C2^2192,1397

׿
×
𝔽